EVQLV Featured in insideBIGDATA

Apr 8, 2020 | News | 0 comments

Daniel Gigante

Our work with ImmunoPrecise on COVID-19 was covered by insideBIGDATA. They did a fantastic job covering the piece originally published by Columbia Data Science Institute, highlighting a few choice gems. See below.


What our algorithms do is reduce the likelihood of drug-discovery failure in the lab,” he adds. “We fail in the computer as much as possible to reduce the possibility of downstream failure in the laboratory. And that shaves a significant amount of time from laborious and time-consuming work. We are building a company that sits at the frontiers of AI and biotech. We are hard at work accelerating the speed at which healing is discovered and delivered and could not ask for a more fulfilling mission.

Read the entire article here.

0 Comments

Submit a Comment

Your email address will not be published. Required fields are marked *

EVQLV and Manhattan BioSolutions Enter into Strategic Collaboration to Discover Novel Antibody-Based Therapies

The collaboration fuses EVQLV’s expertise in AI-enabled antibody design & Manhattan BioSolutions’ expertise in antibody development in oncology

Demystifying AI In Pharma

Examining AI as automated, assistive, analytical, accelerated, or augmented intelligence is a framework for thinking about how to apply these tools to data in ways that are aligned with an organization’s goals. This framework is designed to allow those who do not routinely build or employ AI to avoid the overhyped rhetoric of AI and consider the practical outcomes of employing it.

Andrew Satz on the Amplifying Scientific Innovation Podcast with Dr. Sophia Ononye-Onyia

EVQLV CEO, Andrew Satz, recently joined the Amplifying Scientific Innovation podcast with Dr. Sophia Ononye-Onyia. They discussed his definition of scientific innovation, personal anecdotes of his CEO journey and EVQLV’s unique approach to scientific innovation through the acceleration of biologic therapies with the power of artificial intelligence (A.I.).

How Our Algorithm Models the Drug Discovery Process

Our CEO, Andrew Satz, recently spoked at “Alumni in Conversation,” hosted by Columbia University School of General Studies. During the discussion, Andrew explained how EVQLV’s algorithm models the drug discovery process.

Large Pharma’s Embrace of Artificial Intelligence

The benefits of computational drug development are well known and accepted by many in the pharmaceutical space. However, since the onset of the global pandemic, consensus went from it being an interesting concept that was almost certainly the future, to something we need implemented as soon as possible. This is one of the few silver linings of the coronavirus outbreak.

Pin It on Pinterest